Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
preprints.org; 2021.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202104.0605.v1

ABSTRACT

Middle East Respiratory Syndrome coronavirus (MERS-CoV) infects dromedary camels and zoonotically infects humans, causing a respiratory disease with severe pneumonia and death. With no approved antiviral or vaccine interventions for MERS, vaccines are being developed for camels to prevent virus transmission into humans. We have previously developed a chimpanzee adenoviral vector-based vaccine for MERS-CoV (ChAdOx1 MERS) and reported its strong humoral immunogenicity in dromedary camels. Here, we looked back at total RNA isolated from three immunised dromedaries pre and post-vaccination during the first day; and performed RNA sequencing and bioinformatic analysis in order to shed light on the molecular immune responses following a ChAdOx1 MERS vaccination. Our finding shows that a number of transcripts were differentially regulated as an effect of the vaccination, including genes that are involved in innate and adaptive immunity, such as type I and II interferon responses. The camel Bcl-3 and Bcl-6 transcripts were significantly upregulated, indicating a strong activation of Tfh cells, B cell, and NF-kB pathways. In conclusion, this study gives an overall view of the first changes in the immune transcriptome of dromedaries after vaccination; it supports the potency of ChAdOx1 MERS as a potential camel vaccine to block transmission and prevent new human cases and outbreaks.


Subject(s)
Coronavirus Infections , Pneumonia
2.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3766284

ABSTRACT

Background: Estimated seroprevalence of Coronavirus Infectious Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) is a critical evidence for a better evaluation of the virus spread and monitoring the progress of the COVID-19 pandemic in a population. In the Kingdom of Saudi Arabia (KSA), SARS-CoV-2 seroprevalence has been reported in specific regions, but an extensive nationwide study has not been reported. Here, we report a nationwide study to determine the prevalence of SARS-CoV-2 in the population of KSA during the pandemic, using serum samples from healthy blood donors, non-COVID patients and healthcare workers (HCWs) in six different regions of the kingdom, with addition samples from COVID-19 patients.Methods: A total of 11703 serum samples were collected from different regions of the KSA including; 5395 samples from residual healthy blood donors (D); 5877 samples from non-COVID patients collected through residual sera at clinical biochemistry labs from non-COVID patients (P); and 400 samples from consented HCWs. To determine the seroprevalence of SARS-CoV-2, all serum samples, in addition to positive control sera from RT-PCR confirmed COVID-19 patients, were subjected to in-house ELISA with a sample pooling strategy, which was further validated by testing individual samples that make up some of the pools, with a statistical estimation method to report seroprevalence estimates.Results: Overall (combining D and P groups) seroprevalence estimate was around 11% in Saudi Arabia; and was 5.1% (Riyadh), 1.5% (Jazan), 18.4% (Qassim), 20.8% (Hail), 14.7% (ER; Alahsa), and 18.8% in Makkah. Makkah samples were only D group and had a rate of 24.4% and 12.8% in the cities of Makkah and Jeddah, respectively. The seroprevalence in Saudi Arabia across the sampled areas would be 12 times the COVID-19 infection rate. Among HCWs, 7.5% (4.95-10.16 CI 95%) had reactive antibodies to SARS-CoV-2 without reporting any previously confirmed infection. This was higher in HCWs with hypertension. The study also presents the demographics and prevalence of co-morbidities in HCWs and subset of non-COVID-19 population.Conclusion: Our study estimates the overall national serological prevalence of COVID-19 in Saudi Arabia to be 11%, with an apparent disparity between regions.Funding Statement: This study was funded by KAIMRC, Grant: RC20/180; PI: Naif K. Alharbi.Declaration of Interests: The authors declare no conflict of interest.Ethics Approval Statement: The study was approved by the IRB in KAIMRC (Ministry of National Guard Health Affairs) for project number RC20-180. Residual samples from blood banks and clinical laboratories were obtained after an IRB approval. COVID-19 patients and HCWs signed informed consents to give blood samples.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Hypertension
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.28.21250598

ABSTRACT

Background: Estimated seroprevalence of Coronavirus Infectious Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) is a critical evidence for a better evaluation of the virus spread and monitoring the progress of the COVID-19 pandemic in a population. In the Kingdom of Saudi Arabia (KSA), SARS-CoV-2 seroprevalence has been reported in specific regions, but an extensive nationwide study has not been reported. Here, we report a nationwide study to determine the prevalence of SARS-CoV-2 in the population of KSA during the pandemic, using serum samples from healthy blood donors, non-COVID patients and healthcare workers (HCWs) in six different regions of the kingdom, with addition samples from COVID-19 patients. Methods: A total of 11703 serum samples were collected from different regions of the KSA including; 5395 samples from residual healthy blood donors (D); 5877 samples from non-COVID patients collected through residual sera at clinical biochemistry labs from non-COVID patients (P); and 400 samples from consented HCWs. To determine the seroprevalence of SARS-CoV-2, all serum samples, in addition to positive control sera from RT-PCR confirmed COVID-19 patients, were subjected to in-house ELISA with a sample pooling strategy, which was further validated by testing individual samples that make up some of the pools, with a statistical estimation method to report seroprevalence estimates Results: Overall (combining D and P groups) seroprevalence estimate was around 11% in Saudi Arabia; and was 5.1% (Riyadh), 1.5% (Jazan), 18.4% (Qassim), 20.8% (Hail), 14.7% (ER; Alahsa), and 18.8% in Makkah. Makkah samples were only D group and had a rate of 24.4% and 12.8% in the cities of Makkah and Jeddah, respectively. The seroprevalence in Saudi Arabia across the sampled areas would be 12 times the COVID-19 infection rate. Among HCWs, 7.5% (4.95-10.16 CI 95%) had reactive antibodies to SARS-CoV-2 without reporting any previously confirmed infection. This was higher in HCWs with hypertension. The study also presents the demographics and prevalence of co-morbidities in HCWs and subset of non-COVID-19 population. Interpretation: Our study estimates the overall national serological prevalence of COVID-19 in Saudi Arabia to be 11%, with an apparent disparity between regions.


Subject(s)
Coronavirus Infections , COVID-19 , Hypertension
SELECTION OF CITATIONS
SEARCH DETAIL